AD-A218 691

ADA* Ev:QLUATlON PROJECT Um F”'E QQBV / :
) oo TN

USAGE AND SELECTION OF ADA* MICROCOMPUTER
COMPILERS

Prepared for

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,
Communications, and Computers
Technology & Security Division

DTIC

= £ ECTE
S MARO 1 1390
, L

<D

\ Distnbuton Unlimited

-

DISTRIBUTION STATEMEINT X
Approved for public teleasel

Prepared b
Standard Automated Remote to AUT

gDIN Host (SARAH) Branch
COMMAND AND CONTROL SY

STEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145 - 6340
COMMERCIAL (405) 734-2457 /5152
AUTOVON 884 -2457/5152

* Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

9 December 1986

—

" 90 02 28 00

‘—M

ABSTRACT
1
This paper discusses Ada microcomputer compilers
and seeks to provide information to aid in
successful selection of compilers for Ada software
development. Selection of Ada compilers 1is
significantly more complicated than selecting
compilers for older programming languages.
Effective requirements analysis and selection of
Ada compilers will have a large bearin, on how well
project teams are able to develop Ada softwarwa
products and how effectively the products will
execute. . s .

After an introduction in Section 1, the second
section of this paper describes the benefits of
using microcomputers to develop Ada software. Taase
studies are provided to give examples of how
microcomputers can be integrated into a software
production environment.

Choosing an Ada compiler is the topic of the third
section. Specific criteria are highlighted and
references are provided to publications which
provide more detailed selection guidelines. Section
4 then discusses some of the currently available
compilers.

Some of the current limitations aand problems of Ada
compilers are discussed in Section 5. Topics usuch
a3 incremental compilntion, distributed library
gysdtems, and low level (eatures are covered so that
prospective Ada developers are aware ~f the types
of things that they should look for in future Ada
compilers.

Section 6, on experiences and performance issues,
provides information on many of the most commonly

asked questions. The information presented refers ;9' |
mainly to the AlsyCOMP 003 compiler for the IBM PC- ., d
AT and compatible computers. 3 0
e}
T"he final section deals with future directions, d
nddregsing issuas such as compilation rates, LTI
optimization, and compiler environment integration. L s
Y it S N
{7
T T
STATEMENT "A" per Capt. Addjison Rusety Lotes
Tinker AFB, OK 1CSC/XPTA A T adior
TELZCON 2/28/90 CG List spec.al
| A=
- ' - |

_

Ada Evaluation Report Series by CCSO

Ada Training March 1%, 1936
Design Tssuen Tay 21, 1986
Security May 23, 1980
Yicro Compilers December 9, 1286
Ada ¥nvironmen s December 9, 1986
Transportability Winter 86-37
Jodifiability WAinter 86-37
Runtime Mxecution Winter 86-87
Module Reuse Spring 87
Testing Spring 37
Project Management Spring 37
summary Tall 37

7.

N

MICROCOMPUTKRS POR ADA DEVELOPMEBNT.......

TRODUCTION......... T
.1. THE ADA EVALUATION TASK.:..eo e iinenenas cees

.? BACKGROUND....... c e e e e e s e s e es et aasen t e s et e e e 1
5,

. 4.

2.1. ENHANCED PRODUCTIVITY . e ceveeeoesnonsannoceans

2.2. TOOLS FOR PRODUCTIVITY.........

2.3. DISTRIBUTED DEVELOPMENT ENVIQRONMENTS.......

CHOOSING A MICRO COMPILER.... .o
SELECTION CRITERTA...cceceeeass

' «m-
"LIul\;xvu.---.-.........-...--

BENCHMARKING. . et oo eaeeernencans
DISCUSSIONS WITH USERS.........
RUNTIME/SXECUTIVE LICENSES.....
VENDOR SUPPLIED PACKAGES.......

u«\ﬂ\ﬂ\ﬂ\.l\ﬂ
O\UTAKN!‘J

-

CURRENTLY AVAILABL® MICRO COMPILERS.
4.1. REHOSTING....... ce s e e ee et
4.2. COMPILER INFORMATION......... .o
4.%. PC COMPILERS...... Chete et

20 ’
SEOPE CAND CONSTRAIN T e o e et i et i e e e et it st e e,)

COMPILER LEMITATLONS AND PROBLEMS.¢c.c0e.iieeeeennen 135

5.1. [NCREMENTAL COMPILATION........

INTEGRATED ENVIRONMENTS FOR PCs.

5.2.

5.3. LIMITED TARGETS. .. cteeeeneacnns
5.4. DISTRIBUTED LIBRARY SYSTEMS....
5.5. LOW LEVEL FEATURES.¢eeceveeeoss

EXPERIENCES AND PERFORMANCE ISSUES..

6.1. CODE EFFICIENCY..eeereecenennns

6.2. SIZE OF RUNTIME SUPPORT.........

.3. RENDEZVOUS TIMES....... ceae
+4. TASK SCHEDULING..eecon. v e
5. QUALITY .. ineneieiananns ce e

OO
.

FUTURE DIRECTIONS......ctceecececese

SUMMARY AND RECOMMENDATIONS.........
B.l. SUMMARY .. e eeeeenecscosansoass
8.2. RECOMMENDATIONS . . enveerennnnans

Appendices

A.
B.

REFEREECES....... ceteanen csreccnnena

DEFIRITIONS ARD ACRONYMS............

-

¢ 8 a0 0 0 a0 .
L A - . o
e« o o 5 0 0 0 3
® e ¢ o 0000000

..23
.24

1. INTRODUCTION

Fore THE ADA BMVALUATTION TASK

Jnos o opaper 1n oone 1t aorios which seaka by help potentoal Ada
developers gain practical insight into what i3 required to
succeasfully develop Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office (CC32) to
evaluate the Ada language while developing real-time
communications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments and security 13sues. This paper discusses selection
and usage of microcomputer compilers.

£032 chose the Standard Automated Remote to AUTODIN {(Autom tic
Digital YVetwork) Host (SARAH)' project as the vehicle basi: for
the Ada evaluation. 3ARAH is a amall to medium 3ize projec!
(approx. 40,000 lines of source code) which will function as A
standard intelligent terminal for AJTODIN users and will be used
to help eliminate punched cards and paper tape as a
tranamit/receive medium. The development environment for =SARAH
consiats of a number of [BM PC AT and Zenith Z150 microcomputers,
and a Digital Bquipment Corporation (DKC) VAX 11/780. The source
code produced is compiled on the PC A's using Alsys Ada compilers
and the object code is targeted to both the 2150 and PC AT. The
VAX was intended to be used for configuartion management support
and to function as a repository for reusable Ada code. The SARAY
software will run on a range of PC XT, PC AT, and compatible
microcomputers under the 1SDOS operating system (version 2.0 or

higher).

1.2. BACKGROUND

The dramatic 1increase 1in the power of microcomputers,
particularly personal computers such as the IBM PC AT, has made
it possible to use these machines as effective Ada development
workstations. Ada 1s resource intensive. ¥Tor example, the
compilery themselves generally consist of more than 300,000 linen
of complex source coda. In addition, becnuse of the sgstrict
inter-module checking, Ada compilers do not currently support
program overlays and 80 applications generally require a large
amo>unt of memory. But, the future is bright for Ada in terms of
machines which will be able to support Ada development. Systems
are now begiuaning to appear that use the new 803860
microprocessor. These processors support up to 4 Gigabytes of
physical memory and 64 Terabytes of virtual memory<. doreover,
the 80336 executes at four Million Instructions Per Second
(MIPS), and this equates to the power of a Digital <quipment
Corporation VAX 11/780 minicomputer. This is indeed a dramatic
increase in power over the older Personal Computers (rCs). For
example, the IBM PC XT executes at only 333,000 instructions per
3econd and is generally limited to 640 Kilobytes of physical
memory .

R

The flexibility, power, und cost of PC workstations make them
good candidates for Ada development. In the future, these
workstations will play a large role in Ada production
environments. By effective networking, together with a system of
distributed source and library databases, micros can dramatically
improve development throughput. [ndividual workstations can

support a number of general purpese and Ada specifiec prodactivity
toolg, A larce unumber of thaue tools already aexial tapr o
environments and demand i3 encoursging the development ot many

more. Ultimately, these tools will be integrated into a4 very
powerful /fda development environment togetiher with the compiler.

As more micro compilers become available, compiler requirements
analysis and selection will become an important step in the
prccurement and development processes. Tn addition to ensuring
that an Ada compiler can produvce good quality code and L~.rnile
programs quickly, the prospective user must have some knowledgc
of the compiler's targeting capabilities, how well the compiler
will integrate into the development environment, and the
effectiveness of the tasking model implementation. To assess
quality and performance, benchmarking and benchmark reports are
arn importaant wvart of requirements analysis and selection.
w"ffective requicements anralysis and selection ¢f »n Ada compiler
play an important part in determining the success of Ada

projects.

1.3. PURPOSE
The purpose of this paper is to:

0 Provide information on the benefits of using
microcomputers for Ada software development.

0 Discuss important considerations for choosing
microcomputer compilers.

0 Provide details on currently available maicrocomputer
compilers.

o) Highlight some of the limitations, performance issues,
and problems that have been experienced with
microcomputer compilers.

0 Provide information on what to look for in future
compilers.

1.4. SCOPE AND CONSTRAINTS

*his paper diicusses various aspects of microcomputer compilers;
Nowever, more emphasis is given to Personal Computer (pC)
environments such as the IBJI PC AT. This has been done for a
number of reasons. First, the SARAH team has received a large

number of enquiries regarding C compilers and so we feel that
discussion of this type would seem appropriate at itais time.
Secondly, there is a large range of computers, loosely termed

microcomputers, that host Ada compilers. A discussion of each of

these environments and their reapective compilara would be boyond
the scope of this type ot papuer. Readeras ahould rvetfer Lo
the wvarious Dbenchmarking reports- to gain additional

information on these systems. Third, we see the PC workstation
as an important tool for Ada development because of its low cost,
flexibility, and versatility. As such we enccuzragec the use of
PCs and the development of Ada PC tools.

2. MICROCOMPUTERS POR ADA DEVELOPMENT

Microcomputers can provide cheap and versatile Ada workstations.
Also, an Ada development environment consisting of microcomputers
is more survivable than an environment hosted on a single
machine. ¥or example, problems with one workstation will not
severely affect overal!l production. SARAH team members have
found that working with Individual workstations has improved
their productivity because tiey have fiexibility in choosing and
configuring the development tools for their particular system and
they have the full power of the compiler when it i3 needed.

2.1. ENHANCED PRODUCTIVITY

Development productivity can be enhanced through the usc of
workstation compilersa. Oane of the major problems with current
Ada compilers is that they require a significant amount of
computer resources. For example, on a VAX11/780, current Ada
conpilers can support a maximum of three to five concurrent
compilations without severe performance degradation (i.e.
compilation rates drop below usable limits). Some compilers,
for example the SofTech Ada Language System (ALS), severely
iegradata with more than two simultaneous compilations. By using
a network of microcomputers, the compilation load can be shared
by a number of machines. “toreover, if the project team exzpands,
additional machines can be introduced at a relatively low cost so
that team productivity can be maintained.

2.2. TOOLS FOR PRODUCTIVITY

The PC compiler is only ore tool which can enhance software
development: the PC environment will support many general and ada

specific tools to help in the production of high quality Ada
software. The BARAH team uses geveral general purpose toola to
aid in Ads software production. Yor example, varioua text
editors and tocls such as Borland's Sidekick and Superikey sre

used to support development. In addition to the general purpose
tools, there are now several Ada specific tools available for
Pls. Por example, Xinotech Research, INC. markets the Xinotech
Program Composer which is an extremely powerful syntactical Ada
text editor. Other tools include: an on-line Ada encyclopedia
from Tacyon; the AdaGraph design and development system from The
Analytic Sciences Corporation; and Sketcher, an interactive
fraphical Ada software design tool from SYSCON. The PC provides
the basis for an extremely powerful Ada development environment
but the full benefits will not be realized unless the tools work
together in an integrated manner.

2o DISTRIBUTED DRVEMLOPHMUENT MNVIRONMENTS

Networking is required 1if microcomputers are to be used
etfectively in a development environment. Carz:tul consideration
must be given to how micros are used for goftware dovelojpmen!

otherwise ugwurtous +sonfiguration control =aad productivity

problems will arise. For exampie, without a necwork, team members
are more inclined to maintain their own versions of the modules
they are developing rather than constantly updating a central
project library. To use micros effectively, a distributed
environment which maintains a distributed source data base and
distributed library system should be installed. The file server
3nould host configuration management tools and allow for target
code production if embedded applications are being developed.

The development environment used by Alsys Inc. of Waltham ™A
provides a case study of how micros can be used for Ada software

development. 41sys uses a scheme where each engineer on the
compiler project has a PC AT and these are connected to a VAX
11/7%0 via ethernetd, The network has an effective {tn
transmission rate of about one megabyte per minute. foola suan
as the VAX DEC/Code Management System (CHS) provide functions
such as configuration management. The VAY also provides a
repository of Ada source code. The networx cost Alsys
approximately $6000 for VAX enhancements and 31000 for each PC.

The proliferation of networks for PCs has reduced costgs
significantly and as prices continue to fall, the total cost of
installing thia type of network will be far less tnan the quoted

figures.

Another source of information on using micros for Ada so2ftware
production is the Software Engineering Institute (SEI). The s3I
will provide information on distributed development environments
ag a result of their Showcase Environment project-. Their goal
is to implement a software development environment to support the
conatruciion of software systems cousisting of up to one millioua
lines of source code. The SW%I 1intends to exploit thue
capabilities of workstations with high resolution graphics
dizplays. These workstations will be supported by local area
networns. The results of the work being done by the SEL on the
Showcase Environment could prove veneficial fo¢ .rgzzi-ations wiao
are contemplating installing a distributed Adua development
environment.

CC30 attempted to implement an Ada development environment
conaisting of a number of PCs and a VAX 11/780: however, the
result was not particularly successful. One of the major reasons
was that no local area networking facilities were available. As
such, the time required to upload and download data was
excessive. In addition, the communications package being used
was not particularly friendly and so team members were reluctant
to use the system. Another problem was that the SofTech Ada
Language Jystem (ALS) was to provide the automated configuration
management support for the project. The tools provided by the
ALS, were good in concept, but some were unreliaovle and not

particularly easy to use. (i PCs are to be used in an Adsg
development environment, then thought needs to be given to
networking and effective tools need to be secured to aid in
source code management.

5. CHOOSING A MICRO COMPILMR

An er " .ctive requirements analysis for the selection of micre Adu

toupilers will become ever more important as the nambter
vailable compilers increases. This se~tion discusses select.on

-

criteria for Ada compilers. Ada compilers are very complex
pieces o soltwar2 and are intended to be used in nan Adn
Programming Support wnvironment (APSE). As such, many paraootery
must be consgidereld. In addition to assess:ng compiier
requirements, prospecutive users must assess quality ani
effectiveness for Ada software production. Several metnsis -an
te used tH wwuesns thege criteria. For example, this sect!
f.3cuuses the uae f benchmarking, benchuwarxk test resalts, hatls
vt oexparience, anit discussions with users to aid 1na o0 o0 1
selection. Several other important considerati as oo
rantime ‘executive licenses and vendor supplied packages arc 1ls.
ifiacugsed. Appropriate selection of Ada ~:ompilers S
1mportant step for successful development of 4ida s 2f-aure

products.

3.1. SSLECTION CRITERIA

ne soiection criteria for Ada compilers is more complex
that generally applied to the selection of compilers (or T
Langangea, dallis snd Wichmanan indicate that “..ideal ly, =
ompiler agnould compile the langunge defined Iin the langay .o
atandard, produce good gquality code, compile programa yuickly sand
give zood diagnostics when needed. These are indeed requireomenta
for a good compiler, be it Pascal, ®ortran, or Ada. But, Yo
Adsg, sev=2ral other criteria also need to be considered. For
example, on= also needs to know which targets are supported, how
well the compiler fits into the development environment, and hos

effectively the compiler supports tasking and low level features.

A 1ist of essentianl parameters for compiler selection has been
generated by an Ada-Surope working group®. This guide 1is written
from the point of view of someone wishing to know something about
an existing compliler and indicates what information may be needed
from the compiler supplier. A check list is provided for each
criteria and the guide is very easy to follow. Ainyone
conaidering the selection of an Ada compiler would bve well
advised to look at this guide.

An impnrtant criteria for the selection of an Ada compiler (a:
How well will the compiler integrate into ‘he worxing
environment? There are many things that need to be considered.
“or example, does the compiler prodiuce intermediate pro-ran
representationa {e.g. DIANA {Descriptive Intermediate Attributed

Notation for Ada) cnde). Ts there n human readable form of this
cnda® A1l 1 other toola gueh as debuggera be able to uge a4
reprasentation? Can other general purpose tools be invoked when
the ‘rompiler i3 loaded? The SARAH team experienced tne

integration pronslem first hand. When the Alsys compiler (Veraion

i J) was procured for the PC 's, everyone was dismayed by the
f4ct that tools such as S5ideki~k and Super Key would not run when
the compiler was loaded. Team members had boen using thaese touls
previously and found that they significantly iwmproveil the
efUectivenesaa ot the workstations. Thankfully Alays wWwus attune
ty our needs and when Version 1.2 of the compiler wau releaased,
Wwe were once again able to use our faverite toolag. The proyblems
of incompatibility will be more pronounced when more Ada speci{’
tools are released. Hffective integration of Ada tools for
microcomputers 1s an important consideration.

o

Target support 1is another criteria that must te considered wvhen
selecting a micro Ada compiler. For example, the Alsys compiler
targetsa to the PC AT and PC XT {and selected compatirle

computers) running under the 1SDOS operating system. The CA4A373
tompiler is also hosted on the PC AT but it will not targe:t code
tos run ander Y5DLOS. The two compilers run on the same hoat but

are completely different and are used for difterent reasons: the
Alsys produces MGDOS applications software, wnereas the JA5YS
will be used for producing embedded sncftware applicationas. ZTare
nust be taken to select the right compiler for the job.

3.2. VALIDATION

Validation does not ensure guality! This is perhaps one of the
most important things to remember when procuring an Ada compiler.
Validation simply ensures that the compiler conforms to the
language definition and is only a small part the overall compiler
specification”, Wven though a compiler is validated, it may have
anacceptable compilation rates, be unreliable, and may produce
inefficient code. The Ada Validation Office (AVO) checks to see
if the compiler conforms to the language standard but does not
attempt to provide any 1information on quality or effectiveness.
Ar such, the prospective user must resort to other methods, such
a3 benchmarking, to ensure that the compiler will indeed meet
requirements.

3.3. BENCHMARKING

3enchmarking plays a big part in determining the quality and
effectiveness of compilers. As discussed, validation ensures
trat the compiler conforms to the language standard but says
nothing about quality or efficiency. Benchmarking and benchmark
test results can provide comparative data that can be used to
agsegss the performance of compilers.

Cnpies of benchmark test results are now becoming available and
can be extremely useful for compiler selection. A big benefit of
getting Ybenchmark test results is that the testing is generally
done in conjunction with a test methodology and so comparative
studies are generally more accurate than if the tests were
applied by inexperienced personnel, The SXI has recently
piblished benchmarks for several environmentsS. This document
a1luo onutlines the methodology that was used for the tests.

Hopetully, the SilI will continue to produce these high quality
reports. “"he Special I[nterest Group on Ada (3LGAda) Performunce
.38ues3 Working Group i3 also compiling benchmark Lest resal ts.
These results will be made evailable to SIGAua members.

The Ada Compiler Evaluation Capahility (ACH¢) will be a very
aftective set of benchmarking tools for determining the qunlity
and eftfectiveneass of various compilers. The prototype ACKC becume
available from the Ada Validation Facility in January 1386, The
benchmark tests were collected and organized into this prototype
suite by the Ada Programming Support Environment (APSE)
BEvilua“ion and Validation (E&V) team. To get a copy of the
prototype test suite a request can be submitted to:

The Ada Validation Facility
ADS/SIOL

Wright Patterson ATFB

OH 45433-6503

T"ne request muast be on a company letterhead and shoul il be
ncecmpanied by a 2400 foot magnetic tape (tape format information
must be provided). Additional tests and analy:sis tools will he

available in the ACEC when it becomes available.

Benchmarking gives you a chance to get "hands-on" experience with
the compiler vbefore purchase. This is important since witn
"hands-on” the uner interface and general usability criteria can
be assessed. Even if test results are used to assess whether a
compiler will meet project requirements, organizations should
attempt to use the compiler before purchaase. The benchmark
programs can be used for gaining this "hands-on" experience. Sy
using the compiler, prospective users can get a good idea of
reliability, the quality of user documentation, and general ease
of use.

3.4. DISCUSSIONS WITH USERS

One of the best ways to determine how well a particular compiler
performs or whether it is suitable for your needs is to talk to
experienced users. The SIGAda meetings provide an excellent
forum to engage in these discussions. Three national Sicida
meetings are held each year and local groups generally have
regilar meetings. Most of the larger vendors also support users'
groups for their products. Attendance at these meetings provides
a good insight intu the quality and effectiveness of particular

productg. for more information on SiGAda meetings contact:
Ada Information Clearinghouse
S5y (1211 3. %ern, C-107)

The Pentagon
Washington D.C. 20301-3081
Ph. (703) 685-1477

The Ada uformation Jlearinghouse onn alszo provide inforwation on
currently validated compilers and other Adua related information.

3.5. RUNTIME/EXECUTIVE LICENSES

dhen selecting a compiler remember to check the license
agreements and contracts carefully. Some compiler vendors are
cnarging royalties on the runtime package. ¥or e2xample, Alsys
provides 10 free executive 1licenses with each compiler. This
means that if the application being developed will be used on
more than 10 systems or if the software i3 to b2 s0ld to more

than 10 people, then license fees must be paid to Alsys. The
fees vary with the number of times the runtime software will be
aaed, "or numbers between 11 and 1000 Alay:: mual be pnid &o0
per copy. Thisg reduces Lto b5 per copy for numbaers ranging fromw
oyt throash 100,000, As more compilers become availahla,

organizatiovns would be well advised to 3tay clear of campilers
that have this type of licensing scheme.

3.6. VENDOR SUPPLIED PACKAGES

A major benefit of Ada is that the language is standardized and
strictly controlled by validation and is not tied to individual
vendors or machines But, is this entirely correct? Several
vendors are providing additional packages that aid the software
developer but these packages take the torm of an Ada pre-defined
package (i.2. no source code is provided). Alsys provides two
3uch packages: 'UInsigned' and 'DOS'. The DOS pickage provides a
number ot fuanctions that make calls to the MSDOS operating
system. Features such as buffered keyboard inpust, file
input/output, and absolute disk access are provided. Without
doubt, these features are necessary in many applications and the
llsys packuage can gsave development time. However, since source
code 138 not provided, +the applications software cannot be
compiled with another Ada compiler unless a DOS package similar
to the Alsys package is developed. In a sense, if a vendor's
pre-defined packages are used, the applications developer is
tying the application to a particular compiler vendor. As
stated earlier this can be dangerous.

10

4. CURRENTLY AVAILAHBLE MICRO COMPILERS

The number of vatiditod Ada compilers ta increncting at o aalt
rate. dne of tho major reanoan for Lhe rapid iagcroase in Lonat
Ada compilers ure easily rehosted and so a "bause” compiler can

run on & large number of different machines. As such, many of
the compilers that run on larger machines will also run on
micros. This gection discusses some of the currently available
compilers, provides references for obtaining more comprehensive
and up-to-date 1lists of validated compilers, and provides
information on some of the PC compilers curreantly under
development.

4.1. REHOSTING

Since most Ada coupilers are themselves written in Ada, rehoating
to other environments has not been as difficult as has been the
cage with older languages. As such, many of the compilers that
were developed on larger machines have been rehosted to
microcomputers. For example, severual compilers and environments
have been rehosted to the MicroVAX. Some of the compilers
currently available for the MicroVAX are the DuC VAXAda, the
SofTech ALS, and TELESOFT's TeleGEN2. Another very popular micro
based workstation is the Sun Microsystem. Orgunizations such 53
Telesoft, Verdix, Alsys, TeleLOGIC, and New York University have
rehogsted their compilers to this environment.

4.2. COMPILER INFORMATION

The Ada Information Clearinghouse (AdaIC) is one of the best
sources to find out which compilers are currently validated and
which vendors have indicated their intention to wvalidate.
Current validation lists are provided in each copy of the AdalIC
newsletter. The lists provide information on the vendor and
compiler, the host machine, and target machines. In addition
AdalC maintains an Ada Language Implementations Hatrix? which
shows all validated compilers as well as compilers that are under
development or waiting validation.

4.3. PC COMPILERS

There is still not 4 large range of validated compilers f.r PCs.
One of the major problems has been that the PC environments have
not been powerful enough to accommodate an Ada compiler. for
example, most PC systems have been limited to 640 Kilobytes of
memory and execution rates have typically been less than | MIPS.
The IBM PC AT now provides an adequate environment to support Ada
development, and future machines, based on the 80386
microprocessor or equivalent, will allow vendors to effectively
rehost their compilers or develop specific PC compilers. Since
PCs are cheap and provide an environment that has become an

LR

ﬁ-——-—

industry standard, PC compllers will be an important .nd
lucrative market for vendors.

Two compilers that have been validated on the IBM PC AT and
compatibles are the Alsys AlsyCOMP_OO3 and the OASYS PC Platform.
These products are very different in concept. The Alsys compiler
runs under the MS5SDOS operating system and directly uses the PC
hardware. To run the compiler, the PC AT memory must be expanded
to 4 Megabytes. Alsys markets their compiler with a 4 Megabyte
memory bcard. Object code generated by tue Alsys compiler must
run under MSDOS and can use “he protected memory mode of the
30286 microprocessor in the PC AT. Applications are therefore
limited only to the maximum memory that the 80286 can support {'5
Megabytes). Object code can also be targeted to the 8088 based
PC XT but the application must not exceed 640 kilobytes.

The DASYS PC Platform does not exclusively use the PC hardware
for operation. To use the OASY3 system. a processor card must be
inatalled and this card hosts the compiler. The platform card
contains a 32 bit N332032 microprocessor operating at 12.5 Mega
Hertz and up to 16 Megabytes of memory. As such, the PC itself
is only used as an input/output processor for the installed board
which gains control of the entire system. Thne compiler that is
hosted by the PC platform is the Verdix Ada Development System
(vaDps) and runs under the UNIX V.2 operating system. A major
difference between the Alsys and OASYS compiler is that the OASYS
does not target to the MSDOS environment and will not produce
code to run on the host machine. One of the advantages of the
0ASYS compiler is that all the VADS embedded targets will be
supported. This will include target support for the 17504,
63000, NS32032, and a range of Intel processors. In summary,
the 0OASYS system does not currently target applications to run
under MSDOS in the host configuration and uses a separate
processor board for operation. The Alsys compiler is a true PC
AT compiler but does not support targets other than the PC AT and
PC XT; applications must run under MSDOS.

Other organizations that have 1indicated their intention to
validate on PCs are ARTEK, JANUS, General Transaformations, New
York University, and General Systems 2, Many organizations
attempting to develop low cost Ada compilers for PCs have failed
because they have underestimated the complexity of the language
and the computer resources necessary to run the compilers. For
example, the Alsys PC AT compilers consists of approximately
300,000 lines of source code and requires 6,161 Kilobytes of disk
storage to load. The requirements for inter-module checking,
run-time error checking, and concurrent processing place a heavy
burien on developers and host architectures. However, continued
compiler research, more experience, and more powerful PCs will
result in many more Ada compilers for PCs. As more compilers
become available, cosats should also decrease.

5. COMPILBR LIMITATIONS AND PROBLEMS

Many of the limitations and problems discussed in this section
are not peculiar to micro compilers. 1Indeed, the problems affect
a very large number of currently available Ada compilers. A
discussion of problems and limitations ars provided in this paper
to increase general awareness and to help in successful compiler
requirements analysis and selection. Some of the limitations and
problems discussed in this section are: the lack of incremental
compilation, the need for integrated PC environments, the lack of
target support, the need for distributed library systems, and
support for low level features.

5.1. INCREMENTAL COMPILATION

Incrementsl compilation allows the user to make changes to =«
module without having to recompile all the dependent modules.
The lack of incremental compilation can result in a huge
recompilation overhead. This is because the dependencies built
into Ada for inter-module consistency checking can cause even
insignificant changes to result in a propagation of
recompilations. Ada compilers need to support interactive
changes. One way to support interactive changes without
incurring excessive delays is to incorporate the changes in some
rich data object such as a DIANA tree which preserves syntactic
and semantic information rather than in simple ASCII text files.

Of the compilers currently validated, only the Rational supports
incremental compilation. Hopefully, as the state-of-the~-practice
for Ada compiler design improves, necessary features such as
incremental compilation will become common-place, even on
microcomputers.

5.2. INTEGRATED ENVIRONMENTS FOR PCs

The lack of an integrated toolset/environment is a serious
limitation to the Ada developer. A great deal of effort has been
expended in defining Ada Programming Support Environments
(APSE)'0 and tool interfaces (Common APSE Interface Set)'' but
the recommendations may not be entirely sufficient for
distributed Ada development environments consisting of a large
number of micros. Indeed, organizations producing Ada tools for
PCs (including compiler vendors) are paying little attention to
any standard tool interfaces.

Although there ara several Ada specific tools now available for
the PC and many more currently under development, little thought
has been given to integration. If the tools are to be truly
effective in a PC environment, then they must be integrated. For
example, users should be able to move easily between the editor,
compiler and debug facilities. This should be accomplished
through some modern user interface (perhaps consisting of a
system of icons and windows). Also, standard interfaces should

13

be provided for distributed source databases and compilation
libraries. Interfaces for local area network communications
should also be well defined so that the power of networking can
be fully realized. Powerful Ada development tools for PCs are
beginning to emerge; however, a standard method of integrating
the tools is yet to be defined.

5.3. LIMITED TARGETS

The Ada software industry i3 drastically in need of compilers
which target to a range of umbedded computers. The Ada language
was primarily designed to support the development of software for
embedded systems. Yet, to date there are very few compilers that
target to a runge of embedded computers. Microcomputers such as
the DEC MicroVAX support a number of products that will target to
embedded systems; however, the range is extremely limited. For
example, until recently, if an embedded application was required
for an 8086 based embedded system, then the only compiler that
could be used for development was the ALS.

If a PC network is to be used for development of embedded
applications then some thought must be given to how the targeting
will be accomplished. Compilers such as the one produced by
Alsys are excellent for developing source code and genera:i
debugging, but do not target to a range of embedded systems. To
provide the target code, a machine must be selected which will
host a compiler ithat targets to the ombedded system under
development. or example, the Navy stundard embedded
architecture is the UYX 43 and the Navy upecifies the ALS/N will
be used to target to this system. As such, one machine in the
development environment must support the ALS/N (perhaps a
MicroVAX). PCs (using PC compilers) could be used in a networked
eavironment to increase productivity during the development and
debugging of source code, but ultimately the machine hosting the
embedded target would be required for the production of target
code.

5.4. DISTRIBUTED LIBRARY SYSTEMS

A serious limitation associated with using FCs for development is
the lack of a distributed library system. A distributed libdbrary
allows team members to compile parts of the system on their
respective computers and to then test these elements without
having to re-compile on a central computer. Individual libraries
containing parts of the overall system can therefore reside on
separate machines and the compilation overhead is more evenly
distributed.

Without a distributed library, a central library must be
maintained for integration and test. Completed source modules
must be copied to the central computer, and compiled into a
central library. The benefits of using a LAN without some type
of distributed library are eroded because of the large amount of

14

————

file transferring that must take place.

5.5. LOW LEVEL FEATURHKS

Current compilers lack many of the low level features which are
an integral part of the Ada language. These features are listed
in Chapter 13 of the Reference Manual for the Ada Programming
Language7. Some of the features that are generally missing are:
support for interrupts, representational clauses, and address
clauses.

Lack of low level features is a major problem because developers
must resort to using assembly language to provide the machine
interface. Even though these routines conuist of only a few
lines of code, they create problems for ongoing maintenance and
configuration management. For example, in SARAH, a number of
small assembly routines are required for functions such as the
the low level communications driver and keyboard driver. This
hag created a problem for a number of reasons. "irst, the 3ARAH

team, although well versed in Ada, does not have very much
experience with 8088/80286 assembly language. Second, integrating
the routines into the software complicates the integration

process.

fiach compiler vendor must provide an Appendix F to the Reference
Manual for the Ada Programming Language which must specify all
implementation dependent characteristics of the compiler. The
Appendix P will indicate whether or not the low level features
are supported.

15

6. BXPERIENCES AND PBRFORMANCE ISSUES

T"he experiences reported in this section r2late mainly to the
Alsys PC AT compiler (AlsyCOMP_OOS) Versions 1.0 and 1.2. [ssues
such as code elficiency, the size of the runtime support code,
and the effectiveness of the task model implem2ntation are
discussed.

6.1. CODE EFFICIENCY

The Alsys compiler can produ:e code that is as efficient, if not
nore efficient, as that produced by the better PC compilers fc.
other languages. Benchmark testst compared the Alsys compiler to
the Lattice C (Revision 2.15) compiler and Turbo Pascal Version
2.00. The results are very encouraging and a3how that Ada
compilers can in fact produce efficient code. In many tests the
Ada compiler outperformed the other compilers. The SARAH team was
particularly interested to see how well the Alsys compiler
implemented procedure calls. OSARAH was designed using modern
sofltwacre engineering practices and so ccacists of many small
functions and procedures (or tools). If the application was to
operate effectively, then the overhead associated with procedure
calls needed to be minimal. The Ackermann function is a geced
indicator of how effectively calls are implemented; the benchmark
tests showed that the Alsys implementation is considerably more
efficient than either Turbo Pascal or Lattice C.

6.2. SIZE OF RUNTIME SUPPORT

The runtime 3upport module produced by the Ada compiler is large;
however, with care, the size of the runtime can be minimized for
a particular application. Experiments were done to see how large
the overhead would be when the Alsys compiler was used in
different modes and when different predefined packages were used.
fompiling a simple procedure consisting of a single "null"”
statement created an executable file of 15,%13 bytes. If tasking
was added to the runtime, the file size increaaed to 59,953
bytes. Compiling the same simple procedure, without tasking, but
specifying protected (or extended) memory mode produced a file of
40,545 bytes. These results show that the overhead for tasking
and protected memory can be quite large, so only those modes that
are required should be specified.

In addition to the runtime overhead, use of predefined packages
can add to the size of executable files. TFor example, when the
simple procedure was compiled with TEXT 10 (a package providing
standard text input/output routines)r the executable file
increased in size from 15,313 to 41,953 bytes. If only one or two
functions are to ue used from TEXT_IO, then this 1, . largc price
to pay, particularly if the target machine has a constrained
memory size. 3ince SARAH i3 to be targeted to a Zenith 2150
microcomputer with only 640 Kilobytes of memory, a decision was

16

-

made not to uge THXT _[0. Othee prodetined packages add
considerably to the size of the ¢xccutable filo but nowhere nonr
23 much a3 TYXT 1O, For example, SKEQUUNTLAL 1O increased the

size of the executable file from 15,313 to 22,177 bytes while
DIRECT IQ increases the size to 23,249 bytes.

If memory size is constrained then care must be taken to minimize
the runtime and pre~-defined package overhead. To see how large
the overhead could become for a typical application, the simple
"null"” procedure was compiled with TEXT IO in the tasking and
protected modes. The size of the executable file was 87,377
bytes. That is a big memory overhead just to execute a "null"
statement. By adding a package which instantiated DIRECT_IO and
SEQUBNTIAL IO, the size of the executable rose to 94,657 bytes.
With Ada, the executable file can be quite large, even if the
actual work olement is smull. Care must be taken to tailor
compilation and use of predefined puackages to meet (he need of
the application, or an unnecessary overhead will result.

6.3. RENDEZVOUS TIMES

Since rendezvous times for Ada task communications are still 1in
the low millisecond range, designers must be careful not to incur
too much of an overhead because of task rendezvous. %xact
rendezvous figures are not available for the Alsys compiler;
however, discussions with Alsys and other users indicate that
that times are between three and 10 milliseconds. Until
rendezvous times become acceptable (at least within the nid
microsecond range) designers should look towards using procedures
instead of tasks wherever possible. The Process Abstraction
Methodology for Embedded Large Applications (PAMELA)'? has
specific criteria for deciding when to use tasks and procedures.
Several other schemes can be used to reduce the effect of poor
rendezvous times. For example, the Modular Approach for Software
Construction, Operation and Testing (MASCOTS)14 uses control
queizes and pools to get around the rendezvous problem.

6.4. TASK SCHEDULING

Curcvrently, the Alsys compiler does not have timeslicing
impilamented for task ancheduling. As 3uch, an application which
han tasks mny not execute as expected. For exumple, Figure o.1

contains a simple tasking application where both tasks are of
equal priority. One would think that when the program executed,
we would get a few lines of "Task one active..” followed by a few
lines of "Task two active.."” and so on, depending on the duration
of the time slice. What in fact happens with the Alsys compiler
is that only one of the messages will be printed over and over
again. The problem is that there is no timeslicing implemented
for tesk scheduling and 8o the compiler performs scheduling only
at task synchronization points (i.e. at rendezvous points, at the
end of a delay, and at task activation). As such, one task will
execute until it becomes unrunable, reaches a synchronization

17

point, or a task with a higher pricrity becomes runable. Normal
priority rules are followed for pre-emption and the priority
values are in the range 1..10.

6.5. QUALITY

Jany of the Ada products currently available are of dubious
quality; however, this certainly does not apply to the ALSYS
C Al compiler. The Alsys compiler is a very veliable and robust
pliece of software. Very few problems have been tound with the
compiler and tne standard of documentation i3 extremely high. The
compiler is very easy to use and comprehensive on-line help is
available. The user interface follows the conventional compile,
bind, and execute cycle and, although easy to use, becomes a
little tedious after a while. Alsys should look at providing a
more integrated approach such as that provided by Borland with
Turbo Pascal. The diagnostics provided by the compiler are
cffective o~ holp pinpcint many problems. In summary, the Alsys
PC AT compiler is an excellent product.

This does not mean that the compiler cannot be used for
concurrent applications. However, developers need to be
cognizant of this limitation 80 that unexpected problems do not
adversely affect the development schedule.

with TEXT [0;
use TuAT_10;

procedure TASK TKEST is -- a procedure to check for task scheduling

task Task One;

task Task Two;

task body Task One is
begin
loop --forever
Put Line ("Task one active..");

end loop;

end Task One;

task body Task Two is
begin
loop --forever
Put Line ("Task two active..");

end loop;

end Task_Two;

begin --activate tasks
null;

end Task Test;

FIGURE 6.1 Task Scheduling Example

19

Fl..l.....lll.lIllI.IIIIlllIllllIIllIIIIIIIIII-------t

7. FUTURE DIRECTIONS

The micro compilers that are currently availuble are sufficient
for developing Ada software. As illustrated, there are still
many areas where 1improvements are required. This s8section
provides information on the feaiures that will be available in
fature generations of Ada compilers.

The next generation of Ada compilers will provide faster
compilation. But how fast? Dr Robert Dewar (rom UHew York
Jniversity (NYJ) indicated during & session at the Pittsburgh
5:340da meeting {(held in July 1986) that NYU had dev=lopedl
software for a 7 AT which will pertforim aynlax chacks nt about
t2,000 lines of Ada scurce code per mirute. Yrom this result
and other research, he believes that Ada compilers should be able
to compile at a rate of 26,000 lines per minute. Indeed, this is
big improvement uvver current compilers which compile, on average,
at rates of less than 1000 lines per minute.

VYendors are now concentrating on code quality. Yany of the
current compilers do not support optimization. Compiler vendors
nave found that the task of designing and developing Ada
compilers is enormous. Now that their compilers are operational,
v2ndors are resorting to "fine tuning". For example, the next
version of the Alsys compiler will incorporate a high level
ontimizer. Plans are also underway to introduce a low level
optimizer. Jode produced by future Ada compilers will be far
more efficient than that produced by current compilery. Other
performance improvements will include faster task rendezvous
times and better task scheduling implementations.

“ature compilers will be more user-friendly and operate withing
integrated development environments. As more Ada tools become
available for PCs, vendors will need to specify common interfaces
so tnat the tools can work together. The traditional compile,
bind and execute cycle will give way to a more interactive
environment which will include syntax directed editors, smart
debugging tools, and distributed networks.

Tsers will ultimately work with a family of compilers. During
initial development, users will be able to eliminate s3yntax
errors by using fast syntax parsers (perhaps integrated with the
editur)- To ensure the code will compile correctly, a high speed
compiler will Ls used. This compiler will allow for incremental
and partial compilation. After the system has been successfully
compiled and executed, an optimizing compiler will produce the
efficient code needed for the the final product. These various
levels of compilation may form an integral part of an Ada
development environment.

20

8. SUMMARY ARD RECOMMENDATIONS

8.1. SUMMARY

ne basgiy tools are available to develop Ada softwaire woth
microcomputersa: however, there is enormous room for improvement.
Microcomputers, puarticularly PCs, are becoming mure powerful and
80 are n a better position to effectively host Ada cumpilers and
a deveiopment tools. As the number of Ada projects increases,
ttvere will be a proliferation of compilers and tools.
crocomputers will play a large part in Ada softwsare
development. Networxing, distributed source data bases and
libraries, and low costs will make them attractive for
organizations engaged in developing Ada software products.

Catil recently, the Ada commun’ty has lacxkxed the tools to
=ffestively develop Ada software applications. Considering that
tne language was standardized in 1983, vendors have bteen slow
provide the required compilers and tools. The complexity =¢ the
lanzuage, a previosly limited market, and complicated validution
procedures nhave often been blamed for the slow response.
However, there are now 3ufficient compilers for most applications
and the number of new products i3 increasing exponwentially.
Armed Wwith current xnowledge, continued research, and a huge 4ii4
3oftwure market, compiler vendors will continue to ilwprove their
produsts and strive to provide features which further aid the ida
s>ftware devoloper.

As the number of available Ada compilers for micros iacreases,
effextive requirements analysis and selection will be an
imperrtant step in tne development process. 3Selecting 7 Ada
compiier can be far more difficult than selecting a compiler for
oller languages because Ada compilers are more easily reh . .sted,
they poadsess features that allow integration with other toolse,
1inl they are genersally far more complex. failure to correctly
spe2ify and procure the right compiler could jeopardize the
gunzress of the development project. Since v=lidation simply
ensures that the compiler conforms to the language standard, the
prospective users will have to resort to other techniques 3uch as
benchmarkxing to test for quality and effectiveness.

“xperiences with the Alsys PC AT compiler has shown thaiv Ada -ode
can bhe ag efficient as that produced by compilers for other
languages. However, the size of the runtime sSupport software
produced by the compiler will cause problems for applications
targeted to machines with limited memory if compilation ani titne
u3e of predefined packages 1s not properly managed. Another area
of concern for designers is task communications. 3ecause of
inetfficient task rendezvous, designers need to carefully assess
ta4ak usage.

21

FIlIIlllIlIll-llI--I-I-I-lIIIII-I-III-IIIIII-I--I----L

8.2. RECOMMENDATIONS

Recommendations are:

Consideration should be given to using networked PCs in
Ada development environments.

Vendor supplied pre-defined packages should be used with
discretion.

nsure that you are familiar with the lizensing
agreements before deciding on a compiler.

Perform an effective requirements wnalysis before
selecting a compiler.

Benchmark and test compilers before buying.

When selecting a compiler, ask experienced users for
their view of your choice.

Ada software technology is fast moving and 8o it 1=z
extremely important to keep abreast of developments.

~)
J

A. BREFERENCES

1] "SARAH Operational Concept Document”, Command and Control
Systems Office, US Air Force, 5 September 198v.

[2] MARBACH W. D., "Technology at New Plateaus”, Personal
Computing, October 1986, pp 172-17"7.

(3] WALLIS P.J.L., WICHMAN B.A., "Requirements Analysis For Ada
Compilers”, Communications of the ACM Vol 24 No 1, pp 37-41.

[4) BROGSOL B., AVAKIAN A.S., GART M.B., "Alsys Ada Compiler for
the TIBM PC AT.

[5] BARBACCI M.R., HABERWMANN N., SHAW M., "The Software
Engineering Institute: Bridging Practice and Potential”, IE:
Software, Nov 1986, pp 4-21.

&5]

[6] NISS&N J.C.D., WALLIS P.J.L., WICHMANN B.A., et al, Ada-
Burope Guidelines for the Selection and Specification of Ada
Compilers”, ACH Ada Letters Vol IIl No 1 (July-Aug 1983) pp 27-50.

[7] U.sS. Department of Defense, "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD 1815A, Jan 1983.

(8] WEIDERMAN N., HABERMANN N., et al, "Evaluation of Ada
Environments: Executive Summary Chapter 1 Chapter 2", Software
Engineering Institute, August 1986.

LYy] "Ada Language Implementations Matrix", Ada Letters,
Vol VI No 6 (November-December 1986).

10] "Requirements for the Programming Environment for the
Common High Order Language"”, STONEMAN, Department of Defense,
Washington, D.C., November 197173,

[11] "MIL-STD Common Ada Interface Set (CAIS)", National
Technical Information Service (NTIS), accession number AD A157-
h873.

{12] WICHMANN B.A., "Ackermann's Function in Ada", ACM 4Ada
Letters Vol VI No 3 (May, June 1986), pp 65-67.

[13] CHERRY G.W., "The PAMELA Designer's Handbook", Thought
Tools, Reston VA.

4] "Special Issue on MASCOT", Software Engineering Journal,

[
|%E Savoy Place TLondon, Vol 1 No 3, May 1986.

23

B. DEBFIRITIONS AND ACRONYMS

formation Clearinghouse (AdaIC): A wection of the AJPO
provides information on Ada matters.

Ada In
which

Ada Joint Program Office (AJPO): A U.S. Department of Defense
office responsible for the Ada programming language.

Ada Language System (ALS): An APSE developed by SofTech Inc,
Waltham MA.

Ada Programming Support Bnvironment (APSE): An integrated set of
software development tools for Ada software development.

Ada Validation Office (AVO): An office of the U.S. Department of
Defense responsible for the validation of Ada compilers.

Automatlc Digital Network (AUTODIN): Communicationa network for
J.5. Department of Defense.

Descriptive Intermediate Attributed Notation for Ada (DIANA): An
intermediate data representation for Ada compilers.

Micro: Short for microcomputer. A computer in which the Central
Processing Unit is made up of one or more microprocessors.

Millions of Instructions Per Second (MIPS): A measurement of
computer execution speed.

Personal Computer (PC): A low cost desk-top microprocessor based
computer.

Personal Computer-Advanced Technology (PC AT): A computer that
is comatible with the IBM PC AT. This computer is based on the
IN?<L 80286 microprocessor and can address up to 16 Megabytes of
memory in protected modse.

Personal Computer-EXtended Technology (PC XT): A computer that
is compatible with the IBM PC XT. This computer is based on the
INTEL 8088 microprocessor and is generally limited to 640
Kilobytes of phsical memory.

Sidekick: An on-line utility program from Borland that provides
feantures such as a calendar, notepad, calculator, ASCIT tabdle,
and phone directory.

Standard Automated Remote to AUTODIN Host (SARAH): A standard
Lntelllgent terminal for AUTODIN users.

SuperKey: An on~line utility program from Borland that acts aa a
kevboard enhancer.

Tentth -1 hog An IBM PO X1 compatible coampnter sold by Zenith

hata Syatems.

24

-t

